BASIC to INTERMEDIATE problems for Limits, Derivatives, and Integrals.


1. Limit Exercises

Exo 1: Basic Limit Calculation

Problem:

\[
\lim_{x \to 0} \frac{\sin(x)}{x}
\]

Solution:

This is a standard limit which is part of the limit formulas:

\[
\lim_{x \to 0} \frac{\sin(x)}{x} = 1
\]

Exo 2: Using L’Hopital’s Rule

Problem:
\[
\lim_{x \to 0} \frac{1 – \cos(x)}{x}
\]

Solution:

This is a \(\frac{0}{0}\) indeterminate form, so we can apply L’Hopital’s Rule. We differentiate the numerator and the denominator separately:

Numerator: \(\frac{d}{dx}[1 – \cos(x)] = \sin(x)\)

Denominator: \(\frac{d}{dx}[x] = 1\)

Now, we compute the new limit:

\[
\Rightarrow \lim_{x \to 0} \frac{\sin(x)}{1} = 0
\]

Exo 3: Limit at Infinity

Problem:

\[\lim_{x \to \infty} \frac{3x^2 + 5x}{x^2 – 4x + 1}\]

Solution:

For limits at infinity, we divide both the numerator and denominator by \(x^2\), the highest degree term:
\[\frac{3x^2 + 5x}{x^2 – 4x + 1} = \frac{3 + \frac{5}{x}}{1 – \frac{4}{x} + \frac{1}{x^2}}\]
As \(x \to \infty\), the terms with \(x\) in the denominator go to zero. Therefore:

\[
\Rightarrow \lim_{x \to \infty} \frac{3 + 0}{1 + 0 + 0} = 3
\]

2. Derivative Exercises

Exo 1: Using the Power Rule

Problem:
Find the derivative of:
\[f(x) = 3x^4 – 5x^2 + 7x – 2\]

Solution:

Apply the power rule
\[\frac{d}{dx}[x^n] = n x^{n-1}\]

\[f'(x) = 3 \cdot 4x^3 – 5 \cdot 2x + 7\]

\[\Rightarrow f'(x) = 12x^3 – 10x + 7\]

Exo 2: Product Rule

Problem:
Find the derivative of

\[f(x) = (2x^3)(x^2 – 1)\]

Solution:

Use the product rule:

\[\frac{d}{dx}[u(x) \cdot v(x)] = u'(x) v(x) + u(x) v'(x)\]

Let

\[u(x) = 2x^3 \Rightarrow u'(x) = 6x^2\]
\[v(x) = x^2 – 1 \Rightarrow v'(x) = 2x\]

Now apply the product rule:

\[f'(x) = (6x^2)(x^2 – 1) + (2x^3)(2x)\]

Simplify:

\[f'(x) = 6x^4 – 6x^2 + 4x^4\]

\[\Rightarrow f'(x) = 10x^4 – 6x^2\]

Exo 3: Chain Rule

Problem:
Find the derivative of
\[f(x) = \sin(3x^2)\]

Solution:

Use the chain rule:

\[\frac{d}{dx}[f(g(x))] = f'(g(x)) \cdot g'(x)\]

Let

\[
u = 3x^2 \Rightarrow f(u) = \sin(u)
\]
\[
\frac{d}{dx}[\sin(u)] = \cos(u)
\]
\[
\frac{d}{dx}[3x^2] = 6x
\]
Now, applying the chain rule:

\[f'(x) = \cos(3x^2) \cdot 6x\]

\[\Rightarrow f'(x) = 6x \cos(3x^2)\]

3. Integration Exercises

Exo 1: Basic Power Rule

Problem:
Find the integral of
\[f(x) = 5x^3 – 2x^2 + 4x – 1\]

Solution:


Apply the power rule for integration:

\[\int x^n \, dx = \frac{x^{n+1}}{n+1} + C \text{ (for } n \neq -1 \text{)}\]
\[\int (5x^3 – 2x^2 + 4x – 1) \, dx = \frac{5x^4}{4} – \frac{2x^3}{3} + \frac{4x^2}{2} – x + C\]

\[\Rightarrow \int (5x^3 – 2x^2 + 4x – 1) \, dx = \frac{5x^4}{4} – \frac{2x^3}{3} + 2x^2 – x + C\]

Exo 2: Integration of \(\frac{1}{x}\)

Find the integral of:
\[f(x) = \frac{1}{x}\]

Solution:


The integral of \(\frac{1}{x}\) is:

\[\int \frac{1}{x} \, dx = \ln|x| + C\]

Exo 3: Trigonometric Integral

Problem:
Find the integral of

\[f(x) = \sin(x)\]

Solution:


The integral of \(\sin(x)\) is:

\[\int \sin(x) \, dx = -\cos(x) + C\]

Exo 4: Using Substitution

Problem:
Find the integral of
\[f(x) = 3x^2 \cdot e^{x^3}\]

Solution:


Use substitution.
Let

\[u = x^3 \Rightarrow du = 3x^2 \, dx\]

The integral becomes:

\[\int 3x^2 e^{x^3} \, dx = \int e^u \, du = e^u + C\]

Substitute \(u = x^3\)

\[\Rightarrow \int 3x^2 e^{x^3} \, dx = e^{x^3} + C\]
2 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 52 votes, average: 5.00 out of 5 (2 votes, average: 5.00 out of 5, rated)
Loading...

Leave a comment