Most important and commonly used algebraic formulas
1. Basic Arithmetic Formulas
Addition and Subtraction:
\( a + b = b + a \) (Commutative property)
Multiplication and Division:
\( a \times b = b \times a \) (Commutative property)
\( \frac{a}{b} \) (Quotient)
2. Exponents and Powers
Power of a product:
\[
(ab)^n = a^n \times b^n
\]
Power of a quotient:
\[
\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}
\]
Zero exponent:
\[
a^0 = 1 \quad (\text{for any non-zero } a)
\]
Negative exponent:
\[
a^{-n} = \frac{1}{a^n}
\]
Fractional exponent:
\[
a^{\frac{m}{n}} = \sqrt[n]{a^m}
\]
3. Polynomials
Quadratic Formula:
\[
x = \frac{-b\pm\sqrt{b^2-4ac}}{2a}
\]
(for the equation \( ax^2 + bx + c = 0 \))
Factoring of Quadratics:
\[
ax^2 + bx + c = (px + q)(rx + s)
\]
Difference of Squares:
\[
a^2 – b^2 = (a + b)(a – b)
\]
Perfect Square Trinomial:
\[
a^2 + 2ab + b^2 = (a + b)^2
\]
Sum and Difference of Cubes:
\[
a^3 + b^3 = (a + b)(a^2 – ab + b^2)
\]
\[
a^3 – b^3 = (a – b)(a^2 + ab + b^2)
\]
4. Linear Equations
Slope of a line:
\[
m = \frac{y_2 – y_1}{x_2 – x_1}
\]
Point-slope form:
\[
y – y_1 = m(x – x_1)
\]
Slope-intercept form:
\[
y = mx + b
\]
Standard form of a line:
\[
Ax + By = C
\]
5. Systems of Equations
Substitution method: Solve one equation for one variable, then substitute it into the other .
Elimination method: Add or subtract the equations to eliminate one variable .
Cramer’s Rule: For a system of two equations:
\[
\frac{x}{y} = \frac{det(A_x)}{det(A)}
\]
6. Inequalities
Linear inequality:
\[
ax + b > c \quad \text{or} \quad \neq, \leq, \geq
\]
Multiplying/dividing by a negative number: If you multiply or divide an inequality by a negative number, flip the inequality sign .
\[
\text{If } \quad a < b \quad \text{ and } \quad c < 0, \quad \text{ then } \quad ac > bc
\]
7. Logarithms
Logarithmic identity:
\[
\log_b(xy) = \log_b(x) + \log_b(y)
\]
\[
\log_b\left(\frac{x}{y}\right) = \log_b(x) – \log_b(y)
\]
Power rule:
\[
\log_b(x^n) = n \cdot \log_b(x)
\]
Change of base formula:
\[
\log_b(x) = \frac{\log_k(x)}{\log_k(b)}
\]
Logarithmic form of exponentiation:
\[
b^x = y \quad \text{is equivalent to} \quad \log_b(y) = x
\]
8. Rational Expressions
Addition/Subtraction of fractions:
\[
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}
\]
Multiplication of fractions:
\[
\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}
\]
Division of fractions:
\[
\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}
\]
9. Functions
Function notation:
\[
f(x) = mx + b \quad (\text{linear function})
\]
Composite functions:
\[
(f \circ g)(x) = f(g(x))
\]
10. Sequences and Series
Arithmetic sequence:
\[
a_n = a_1 + (n-1) \cdot d
\]
7. Logarithms
Logarithmic identity:
\[
\log_b(xy) = \log_b(x) + \log_b(y)
\]
\[
\log_b\left(\frac{x}{y}\right) = \log_b(x) – \log_b(y)
\]
Power rule:
\[
\log_b(x^n) = n \cdot \log_b(x)
\]
Change of base formula:
\[
\log_b(x) = \frac{\log_k(x)}{\log_k(b)}
\]
Logarithmic form of exponentiation:
\[
b^x = y \quad \text{is equivalent to} \quad \log_b(y) = x
\]
8. Rational Expressions
Addition/Subtraction of fractions:
\[
\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}
\]
Multiplication of fractions:
\[
\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}
\]
Division of fractions:
\[
\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}
\]
9. Functions
Function notation:
\[
f(x) = mx + b \quad (\text{linear function})
\]
Composite functions:
\[
(f \circ g)(x) = f(g(x))
\]
10. Sequences and Series
Arithmetic sequence:
\[
a_n = a_1 + (n-1) \cdot d
\]
Sum of an arithmetic series:
\[
S_n = \frac{n}{2} \cdot (a_1 + a_n)
\]
Geometric sequence:
\[
a_n = a_1 \cdot r^{n-1}
\]
Sum of a geometric series:
\[
S_n = a_1 \cdot \frac{1 – r^n}{1 – r} \quad (\text{for} \ r \neq 1)
\]
11. Quadratic Functions
Vertex form of a quadratic equation:
\[
y = a(x – h)^2 + k
\]
Standard form:
\[
y = ax^2 + bx + c
\]
Discriminant:
\[
D = b^2 – 4ac
\]
If \( D > 0 \), Two real roots
If \( D = 0 \), One real root
If \( D < 0 \), no real roots
12. Binomial Theorem
Expansion of \((a + b)^n\):
\[
(a + b)^n = \sum_{k=0}^{n} \left( \begin{array}{c} n \\ k \end{array} \right) a^{n-k} b^k
\]
\[
\text{Where} \quad \left( \begin{array}{c} n \\ k \end{array} \right) \quad \text{is the binomial coefficient.}
\]